OK, just a brief update on the rather remarkable dice rolling streak I wrote about previously...we were way off in how the odds against such a streak would be calculated. I consulted my resident games-of-chance statistical genius and he explained it thus:
The first die of the 6 - whatever number comes out is correct-whether it's a 1,2,3,4,5, or 6 as any of these numbers are needed.
The second die of the 6 hits the table-it must be one of the remaining numbers left. So you have a 5/6 chance of hitting this number.
The third die hits-must be one of the 4 remaining numbers. And so on.
So 6/6 x 5/6 x 4/6 x 3/6 x 2/6 x 1/6=5/324 or 1.54%
Then to do it 3 times in a row. Must multiply the number above by itself 3 times 5/324 x 5/324 x 5/324=125/34,012,224=roughly 1/272,098 !!!!!
So there you have it. The odds against rolling 1-2-3-4-5-6 on six simultaneously rolled dice three times in a row are 1 out of over a quarter-million. Remarkable.
No comments:
Post a Comment